SIFAT-SIFAT RUANG TOPOLOGI $T_{2\delta}$

Erik Maurten Firdausa,*, Ade Ima Afifa Himayatib

^{ab}Universitas Muhammadiyah Kudus Email: erikmaurteen@umkudus.ac.id

Abstrak

Ruang topologi X disebut ruang $T_{2\delta}$ jika X ruang T_1 serta untuk setiap himpunan terbuka U di Xdan $x \in U$ terdapat $\{V_i | i \in \mathbb{N}\}$ koleksi terhitung persekitaran x yang tertutup di X sehingga $\bigcap_{i \in \mathbb{N}} V_i \subseteq U$. Metode penelitian yang digunakan dalam tulisan ini adalah studi literatur. Penulis meneliti lebih lanjut sifat-sifat ruang topologi $T_{2\delta}$ yaitu sifat menurun, topologi invarian, dan produk sejumlah berhingga ruang $T_{2\delta}$. Dalam hal konsep dasar untuk meneliti sifat ruang topologi $T_{2\delta}$, penulis merujuk pada artikel yang ditulis Kelley. Penulis menunjukkan bahwa ruang $T_{2\delta}$ memiliki sifat menurun, ruang $T_{2\delta}$ merupakan topologi invarian, dan produk sejumlah berhingga ruang $T_{2\delta}$ merupakan ruang $T_{2\delta}$.

Kata Kunci: ruang $T_{2\delta}$, ruang Hausdorff, topologi invarian.

Abstract

A topological space X is called $T_{2\delta}$ if X is a T_1 -space and for any open set $U \subseteq X$ and point $x \in X$ U there exists a countable family U of closed neighborhoods of x in X such that $\cap U \subseteq U$. In this research, we use study literacy. We investigate some properties of $T_{2\delta}$ -space like hereditary, topological invariant, and the product of finite $T_{2\delta}$ spaces. We use (Kelley, 1955) for the basic concept of topological spaces. We show that $T_{2\delta}$ is hereditary and topological invariant. We finally show that the product of finite $T_{2\delta}$ spaces is $T_{2\delta}$.

Keywords: $T_{2\delta}$ spaces, Hausdorff spaces, topological invariant.

I. PENDAHULUAN

Sifat ketertutupan *semilattice* semitopologi lengkap dibahas di dalam (Banakh & Bardyla, 2019a). Penelitian mengenai ketertutupan tersebut dilanjutkan di dalam penelitian (Banakh et al., 2019). Dalam penelitian tersebut, konsep ruang topologi $T_{2\delta}$ dan $\bar{T}_{2\delta}$ dikenalkan. Di dalam penelitian (Banakh et al., 2019), dijelaskan bahwa untuk sebarang ruang semilattice semitopologi lengkap X yang memenuhi aksioma $\bar{T}_{2\delta}$, himpunan $\{(x, y) \in X \times X | xy = x\}$ merupakan himpunan tertutup di $X \times X$. Di antara tulisan-tulisan (Banakh & Bardyla, 2019a), (Banakh et al., 2019), dan (Banakh & Bardyla, 2019b), tidak ada yang secara khusus membahas sifat-sifat ruang topologi $T_{2\delta}$. Sepanjang pengetahuan penulis belum ada tulisan yang membahas mengenai sifat-sifat ruang $T_{2\delta}$. Oleh karena itu, penulis termotivasi untuk menyelidiki sifat-sifat ruang topologi $T_{2\delta}$.

II. LANDASAN TEORI

Definisi persekitaran suatu titik memegang peranan penting untuk mempelajari sifat-sifat ruang topologi. Di dalam tulisan ini, penulis menggunakan definisi persekitaran di buku (Kelley, 1955).

Definisi 2.1(Kelley, 1955)

Diketahui X ruang topologi, U himpunan bagian X, dan $x \in U$. Himpunan U disebut persekitaran x jika terdapat V himpunan $terbuka\ di\ X\ sehingga\ x\in V\subseteq U.$

Kelley (Kelley, 1955) menjelaskan bahwa persekitaran suatu titik tidak harus merupakan himpunan terbuka. Di ruang topologi biasa R, himpunan [0,2] merupakan persekitaran titik 1 karena terdapat himpunan terbuka (0,2) sehingga

$$1 \in (0,2) \subseteq [0,2].$$

Ada ruang-ruang topologi yang definisinya memakai istilah persekitaran. Beberapa di antaranya adalah ruang T_1 dan ruang T_2 .

Definisi 2.2 (Banakh et al., 2019)

Diberikan ruang topologi X. Ruang X disebut ruang T_1 jika untuk setiap $x, y \in X$ dengan $x \neq y$ terdapat persekitaran titik x yang tidak memuat y.

Berdasarkan buku (Kelley, 1955), Definisi 2.2 ekuivalen dengan pernyataan untuk setiap $x \in X$, berlaku $\{x\}$ himpunan tertutup di X.

Selanjutnya, disajikan definisi ruang Hausdorff.

Definisi 2.3(Kelley, 1955)

Diberikan ruang topologi X. Ruang X disebut ruang Hausdorff jika untuk setiap $x,y \in X$ dengan $x \neq y$, terdapat U_x persekitaran x dan U_y persekitaran y sehingga

$$U_x \cap U_y = \emptyset.$$

Di tahun 2019, Banakh, dkk (Banakh et al., 2019) mendefinisikan ruang $T_{2\delta}$.

Definisi 2.4(Banakh et al., 2019)

Diketahui X ruang topologi. Ruang X disebut ruang $T_{2\delta}$ jika X ruang T_1 serta untuk setiap himpunan terbuka U di X dan $x \in U$ terdapat $\{V_i | i \in \mathbb{N}\}$ koleksi terhitung persekitaran x yang tertutup di X sehingga $\bigcap_{i \in \mathbb{N}} V_i \subseteq U$.

Berdasarkan Definisi 2.4, penulis termotivasi membuat istilah khusus untuk himpunan terbuka U dengan sifatuntuk setiap $x \in U$ terdapat $\{V_i | i \in \mathbb{N}\}$ koleksi terhitung persekitaran tertutup x sehingga $\bigcap_{i \in \mathbb{N}} V_i \subseteq U$.

Definisi 2.5

Diketahui X ruang topologi dan U himpunan terbuka di X. Himpunan U disebut himpunan δ_1 -terbuka (δ_1 -open) jika setiap $x \in U$ terdapat $\{V_i | i \in \mathbb{N}\}$ koleksi terhitung persekitaran tertutup x sehingga $\bigcap_{i \in \mathbb{N}} V_i \subseteq U$.

Berdasarkan Definisi 2.5, setiap himpunan δ_1 -terbuka merupakan himpunan terbuka.

Kebalikannya belum tentu berlaku. Hal ini ditunjukkan dalam contoh berikut.

Contoh 2.1

Diberikan ruang topologi $(\{a,b,c\},\tau)$ dengan $\tau = \{\emptyset, \{a,b,c\}, \{a\}, \{b\}, \{a,b\}\}$. Himpunan $\{b\}$ terbuka tetapi bukan himpunan δ_1 -terbuka. Hal ini karena persekitaran b yang tertutup hanyalah $\{b,c\}$ dan $\{a,b,c\}$. Setiap irisan persekitaran b yang tertutup di $\{a,b,c\}$ memuat c sedangkan $\{b\}$ tidak memuat c.

Himpunan δ_1 -terbuka mempunyai sifatsifat yang menarik. Hal ini ditunjukkan dalam teorema berikut.

Teorema 2.1

Diketahui (X,τ) ruang topologi dan τ_1 koleksi semua himpunan δ_1 -terbuka di X. Ketiga pernyataan berikut berlaku.

- 1. Himpunan $X, \emptyset \in \tau_1$
- 2. Jika $A, B \in \tau_1$, maka $A \cap B \in \tau_1$.
- 3. Jika untuk setiap i anggota himpunan indeks I berlaku $A_i \in \tau_1$, maka

$$\bigcup_{i\in I} A_i \in \tau_1$$
.

Bukti.

1. Himpunan $X \in \tau_1$ karena untuk setiap $x \in X$ terdapat koleksi terhitung persekitaran tertutup x yaitu $\{X\}$ sehingga $X \subseteq X$.

Andaikan himpunan $\emptyset \notin \tau_1$. Hal ini berarti terdapat $x \in \emptyset$ sehingga untuk setiap koleksi terhitung persekitaran tertutup x, namakan $\{F_i | i \in \mathbb{N}\}$, berlaku $\bigcap_{i \in \mathbb{N}} F_i \nsubseteq \emptyset$. Pernyataan terdapat $x \in \emptyset$ adalah pernyataan yang salah. Pernyataan yang benar adalah $\emptyset \in \tau_1$.

2. Karena A dan B terbuka di X, maka himpunan $A \cap B$ terbuka di X. Diambil sebarang $x \in A \cap B$. Karena $A \in \tau_1$, maka terdapat $\{F_i | i \in \mathbb{N}\}$ koleksi terhitung persekitaran tertutup x sehingga

$$\bigcap_{i\in\mathbb{N}} F_i \subseteq A$$
.

Karena $B \in \tau_1$, maka terdapat $\{L_i | i \in \mathbb{N}\}$ koleksi terhitung persekitaran tertutup x sehingga $\bigcap_{i \in \mathbb{N}} L_i \subseteq B$. Hal ini berarti terdapat $\{F_i \cap L_j | i \times j \in \mathbb{N} \times \mathbb{N}\}$ koleksi terhitung persekitaran tertutup x sehingga $\bigcap_{(i,j) \in \mathbb{N} \times \mathbb{N}} F_i \cap L_j \subseteq A \cap B$.

$$\bigcap_{j\in\mathbb{N}}F_j\subseteq A_k\subseteq\bigcup_{i\in I}A_i.$$

Hal ini berarti untuk ruang topologi (X, τ) , koleksi semua himpunan δ_1 – terbuka di X merupakan topologi pada X.

Dengan menggunakan definisi himpunan δ_1 —terbuka, definisi ruang $T_{2\delta}$ dapat ditulis sebagai berikut.

Definisi 2.6

Diketahui X ruang topologi. Ruang X disebut ruang $T_{2\delta}$ jika X ruang T_1 dan setiap himpunan terbuka di X merupakan himpunan δ_1 -terbuka.

Untuk lebih memahami definisi ruang $T_{2\delta}$ diberikan contoh-contoh berikut.

Contoh 2.2

Setiap ruang *metrizable* adalah ruang $T_{2\delta}$. Diketahui X ruang *metrizable* yang topologinya dibangkitkan oleh metrik d. Untuk $x \in X$ dan bilangan $\varepsilon > 0$, didefinisikan himpunan-himpunan

$$B(x,\varepsilon) = \{ y \in X | d(y,x) < \varepsilon \},$$

$$\bar{B}(x,\varepsilon) = \{ y \in X | d(y,x) \le \varepsilon \}.$$

Akan dibuktikan X ruang T_1 . Diambil sebarang $x \in X$ dan $y \in X \setminus \{x\}$. Karena x dan y berbeda, maka d(x,y) > 0. Didefinisikan $\varepsilon_0 = \frac{d(x,y)}{2}$. Diperoleh hubungan

$$B(y,\varepsilon_0)\subseteq X\setminus\{x\}.$$

Hal ini berarti $X \setminus \{x\}$ terbuka sehingga $\{x\}$ tertutup di X. Karena x diambil sebarang, maka ruang X adalah ruang T_1 .

Diambil sebarang U himpunan terbuka di X dan $z \in U$. Karena X ruang metrizable, maka ada $\varepsilon > 0$ sehingga $B(z, \varepsilon) \subseteq U$. Untuk setiap $n \in \mathbb{N}$, himpunan $\overline{B}\left(z, \frac{\varepsilon}{n+1}\right)$

merupakan persekitaran z yang tertutup di X. Terdapat koleksi terhitung persekitaran z yang tertutup di X yaitu

$$\left\{ \bar{B}\left(z, \frac{\varepsilon}{n+1}\right) \middle| n \in \mathbb{N} \right\},$$

sehingga

$$\bigcap_{n\in\mathbb{N}} \bar{B}\left(z, \frac{\varepsilon}{n+1}\right) \subseteq B(z, \varepsilon) \subseteq U.$$

Jadi *X* ruang $T_{2\delta}$.

Berikut ini disajikan contoh ruang topologi yang bukan ruang $T_{2\delta}$.

Contoh 2.3

Diberikan ruang topologi (X, τ) dengan $X = \{a, b\}$ dan $\tau = \{X, \emptyset, \{a\}\}$. Untuk himpunan terbuka $\{a\}$, persekitaran tertutup yang memuat a hanyalah X. Sementara itu,

$$X \nsubseteq \{a\}.$$

Hal ini berarti (X, τ) bukanlah ruang $T_{2\delta}$.

Pada Contoh 2.1, telah ditunjukkan bahwa setiap ruang *metrizable* merupakan ruang $T_{2\delta}$. Sementara itu, ruang *metrizable* adalah ruang Hausdorff. Timbul pertanyaan baru mengenai hubungan antara ruang $T_{2\delta}$ dengan ruang Hausdorff. Berdasarkan tulisan (Banakh et al., 2019), setiap ruang $T_{2\delta}$ merupakan ruang Hausdorff. Hal ini ekuivalen dengan mengatakan bahwa setiap ruang topologi yang bukan ruang Hausdorff bukan ruang $T_{2\delta}$.

Akiz dan Kocak (Akiz & Kocak, 2019) menyatakan bahwa setiap ruang Hausdorff merupakan ruang Hausdorff sekuensial. Dengan demikian, setiap ruang $T_{2\delta}$ merupakan ruang Hausdorff sekuensial.

III. METODE PENELITIAN

Metode penelitian yang digunakan dalam tulisan ini adalah studi literatur. Penulis meneliti lebih lanjut sifat-sifat ruang topologi $T_{2\delta}$ yang dikenalkan dalam tulisan (Banakh et al., 2019). Dalam hal konsep dasar untuk meneliti sifat ruang topologi $T_{2\delta}$, penulis merujuk (Kelley, 1955).

IV. HASIL DAN PEMBAHASAN

Di dalam bagian ini akan dipaparkan sifatsifat ruang topologi $T_{2\delta}$. Sifat-sifat yang dibahas adalah sifat menurun, topologi invarian, dan produk sejumlah berhingga ruang $T_{2\delta}$. Pertama-tama, akan dibahas sifat menurun ruang $T_{2\delta}$. Setiap ruang bagian ruang $T_{2\delta}$ adalah ruang $T_{2\delta}$. Hal ini ditunjukkan dalam teorema berikut.

Teorema 4.1

Diberikan ruang topologi X dan ruang bagian $A \subseteq X$. Jika X ruang $T_{2\delta}$, maka A ruang $T_{2\delta}$.

Bukti.

Diambil sebarang $a \in A$. Karena X ruang T_1 , makahimpunan $\{a\}$ tertutup di X. Karena itu, $\{a\} = \{a\} \cap A$ tertutup di A. Hal ini berarti A ruang T_1 .

Diambil sebarang V himpunan terbuka di A dan $x \in V$. Karena V himpunan terbuka di A maka ada U himpunan terbuka di X sehingga $V = U \cap A$. Karena X adalah ruang $T_{2\delta}$ dan $x \in U$, maka ada koleksi terhitung persekitaran titik x yang tertutup di X, namakan $\{F_i | i \in \mathbb{N}\}$, sehingga

$$\bigcap_{i\in\mathbb{N}}F_i\subseteq U.$$

Karena untuk setiap $i \in \mathbb{N}$ himpunan F_i adalah persekitaran x yang tertutup di X, maka untuk setiap $i \in \mathbb{N}$, berlaku $F_i \cap A$ persekitaran titik x yang tertutup di A. Ada koleksi terhitung persekitaran x yang tertutup di A yaitu $\{F_i \cap A | i \in \mathbb{N}\}$ sehingga

$$\bigcap_{i\in\mathbb{N}}(F_i\cap A)\subseteq V.$$

Dengan demikian, ruang bagian A adalah ruang $T_{2\delta}$

Kelley (Kelley, 1955) menyebutkan bahwa secara formal, topologi adalah studi tentang topologi invarian. Berdasarkan (Kelley, 1955), jika suatu ruang topologi X memiliki sifat P dan terdapat homeomorfisma $f: X \rightarrow Y$ sehingga Y memiliki sifat P, maka sifat P adalah topologi invarian. Ruang $T_{2\delta}$ merupakan salah satu contoh topologi invarian.

Teorema 4.2

Diberikan ruang topologi X dan Y serta fungsi homeomorfisma $f: X \to Y$. Jika X ruang $T_{2\delta}$, maka Y ruang $T_{2\delta}$.

Bukti.

Akan ditunjukkan Y ruang T_1 . Diambil sebarang $b \in Y$. Karena f fungsi bijektif, maka $f^{-1}(\{b\}) = \{t\}$ untuk suatu $t \in X$. Karena X ruang $T_{2\delta}$, maka X ruang T_1 . Hal ini berarti $\{t\}$ himpunan tertutup di X. Karena f^{-1} kontinu pada Y, maka $\{b\} = f(\{t\})$ himpunan tertutup di Y. Karena f diambil sebarang, maka f ruang f.

Diambil sebarang V himpunan terbuka di Y dan $y \in V$. Hal ini berarti $f^{-1}(y) \in f^{-1}(V)$. Karena f kontinu pada X, maka $f^{-1}(V)$ terbuka di X. Karena X ruang $T_{2\delta}$, maka ada koleksi terhitung persekitaran titik $f^{-1}(y)$ yang tertutup di X, namakan

$${F_i|i\in\mathbb{N}},$$

sehingga $\bigcap_{i\in\mathbb{N}} F_i \subseteq f^{-1}(V)$. Karena f^{-1} kontinu pada Y, maka untuk setiap $i\in\mathbb{N}$ berlaku $f(F_i)$ tertutup di Y. Sementara itu, karena untuk setiap $i\in\mathbb{N}$ berlaku F_i persekitaran titik $f^{-1}(y)$, maka untuk setiap $i\in\mathbb{N}$ berlaku $f(F_i)$ persekitaran titik y. Hal ini berarti untuk setiap $i\in\mathbb{N}$ berlaku $f(F_i)$ persekitaran titik y yang tertutup di Y. Karena f bijektif, maka berlaku

$$\bigcap_{i\in\mathbb{N}}f(F_i)\subseteq f\left(\bigcap_{i\in\mathbb{N}}F_i\right).$$

Di lain pihak, karena $\bigcap_{i\in\mathbb{N}} F_i \subseteq f^{-1}(V)$,maka

$$f\left(\bigcap_{i\in\mathbb{N}}F_i\right)\subseteq V.$$

Akibatnya,

$$\bigcap_{i\in\mathbb{N}} f(F_i) \subseteq f\left(\bigcap_{i\in\mathbb{N}} F_i\right) \subseteq V.$$

Dengan demikian, Y ruang $T_{2\delta}$.

Sifat terakhir yang akan diselidiki adalah produk sejumlah berhingga ruang $T_{2\delta}$ adalah ruang $T_{2\delta}$.

Teorema 4.3

Diketahui A dan B ruang topologi. Jika A dan B ruang $T_{2\delta}$, maka ruang produk $A \times B$ adalah ruang $T_{2\delta}$.

Bukti.

Akan ditunjukkan $A \times B$ ruang T_1 . Diambil sebarang $(x, y) \in A \times B$. Karena A dan B masing-masing ruang T_1 , maka $\{x\}$ tertutup di A dan $\{y\}$ tertutup di B. Hal ini mengakibatkan $\{x\} \times \{y\} = \{(x, y)\}$ tertutup $\operatorname{di} A \times B$.

Diambil sebarang *U* himpunan terbuka di $A \times B$ dan $(t, v) \in U$. Hal ini berarti ada W himpunan terbuka di A dan V himpunan terbuka di B sehingga $(t, v) \in W \times V \subseteq U$. Karena W terbuka di $A, t \in W$, dan A ruang $T_{2\delta}$ maka ada koleksi terhitung persekitaran titik t yang tertutup di A, namakan

$${F_i|i\in\mathbb{N}},$$

sehingga

$$\bigcap_{i\in\mathbb{N}} F_i \subseteq W$$
.

Karena V terbuka di $B, v \in V$, dan B ruang $T_{2\delta}$, maka ada koleksi terhitung persekitaran titik y yang tertutup di B, namakan

$$\{G_j|j\in\mathbb{N}\},$$

sehingga

$$\bigcap_{j\in\mathbb{N}}G_j\subseteq V.$$

Untuk $(i,j) \in \mathbb{N} \times \mathbb{N}$, berlaku $F_i \times G_i$ persekitaran titik (t, v) yang tertutup di $A \times$ B. Sementara itu, koleksi

$$\{F_i \times G_j | (i,j) \in \mathbb{N} \times \mathbb{N}\}$$

terhitung. Di sisi lain, diperoleh hubungan

$$\bigcap_{(i,j)\in\mathbb{N}\times\mathbb{N}} \left(F_i\times G_j\right) = \bigcap_{i\in\mathbb{N}} F_i\times \bigcap_{j\in\mathbb{N}} G_j$$

 $\subseteq W \times V$

 $\subseteq U$.

Hal ini berarti $A \times B$ ruang $T_{2\delta}$.

Teorema 4.3, diperoleh Berdasarkan produk sejumlah berhingga ruang $T_{2\delta}$ merupakan ruang $T_{2\delta}$.

V. KESIMPULAN

Berdasarkan pemaparan pada bagian IV, ruang $T_{2\delta}$ mempunyai sifat menurun, yang dapat dilihat di Teorema 4.1. Ruang $T_{2\delta}$ merupakan topologi invarian. Selain itu, produk sejumlah berhingga ruang $T_{2\delta}$ merupakan ruang $T_{2\delta}$.

DAFTAR PUSTAKA VI.

H. F., & Kocak, L. (2019). Akiz, Communication Faculty of Sciences Ankara-Series University of Mathematics and Statistics. Sequentially Hausdorff and FullSequentially Hausdorff Spaces, 68, 1724–1732. https://doi.org/10.31801/cfsuasm

T., Banakh, & Bardyla, S. (2019a). Completeness and absolute H-closedness of topological semilattices. Topology and Its Applications, 260, 189–202. https://doi.org/10.1016/j.topol.2019.04.0 01

Banakh, T., & Bardyla, S. (2019b). The interplay between weak topologies on topological semilattices. Topology and Applications, 259, 134–154. https://doi.org/10.1016/j.topol.2019.02.0

Banakh, T., Bardyla, S., & Ravsky, A. (2019). The closedness of complete subsemilattices functionally in Hausdorff semitopological semilattices. Topology and Its Applications, 267, 106874.

> https://doi.org/10.1016/j.topol.2019.106 874

Kelley, J. L. (1955). General Topology. Springer.